Как правильно и корректно сделать расчет тепла теплого пола

Расчет тепла теплого пола в квартире или доме - альтернатива традиционным системам отопления. Чтобы она работала качественно и корректно, необходим грамотный расчет тепла и мощности.

Есть ли реальная экономия при использовании теплого пола

Но откуда может возникнуть такая экономия, если теоретически для обогрева какого-либо помещения должно затрачиваться одинаковое количество тепла, независимо от системы отопления?

При использовании теплого пола экономия тепла становится возможной благодаря специфике его распределения. При использовании радиаторного отопления тепло постоянно находится в движении – поднимается вверх от радиатора, потом охлаждается у потолка и опускается вниз к полу, а при использовании теплого пола циркуляции практически нет, а самая высокая температура располагается у самого пола. В системе теплых полов температура теплоносителя чаще всего не превышает 55 градусов, а в радиаторной системе отопления температура часто достигает 90 градусов.

Но не нужно делать поспешные выводы. Разница температур теплоносителей двух рассматриваемых систем сама по себе не является показателем экономии. Для того, чтобы поддерживать одинаковую температуру в помещении, котлом в обоих случаях затрачивается примерно равное количество энергии, в соответствии с элементарными законами физики. В таком случае становится непонятно, откуда может появиться экономия?

Теплопотери: как провести расчет

Чтобы узнать мощность ТП нужно определить количество теплопотерь помещения.

Количество уходящего тепла на улицу через пол рассчитывается немного иначе, чем через другие ограждающие конструкции. Прежде чем укладывать обогрев, необходимо ознакомиться с методикой их определения. Для этой цели может использоваться программа расчета теплого водяного пола. Сразу скажем, что без утепления пола низкотемпературные системы отопления не монтируются.

После определения термических сопротивлений для каждой ограждающей конструкции необходимо рассчитать их площадь. Кроме того, следует знать разницу температур наружного и внутреннего воздуха. За расчетное значение стоит принять температуру наиболее холодной пятидневки. Также читают: “Виды терморегуляторов для водяного теплого пола“.

Перед тем как рассчитать теплые водяные полы, необходимо вычислить теплопотери, руководствуясь формулой:

Q = S*T/R, где:

  • Q – потери теплоты, Вт;
  • S – расчетная площадь каждой зоны, м. кв;
  • R – тепловое сопротивление ограждающей конструкции, м. кв °С/Вт;
  • T – разница температур.

Когда расчет для каждой ограждающей конструкции завершен, необходимо приступить к вычислению суммарных теплопотерь путем сложения полученных результатов. Это значение понадобится для определения теплоотдачи, которую должна обеспечить система обогрева.

Напольные покрытия

Виды финишного напольного покрытия для теплых полов: наливная поверхность, линолеум, ламинат или паркет, кафель, керамическая и метлахская плитка, мрамор, гранит, базальт и керамогранит.

Деревянному напольному покрытию противопоказана постоянная влажность в помещении, поэтому его не используют в ванных комнатах с теплыми полами.

Таблица 4. Теплопроводность напольных покрытий:

Тип материала Толщина слоя δ, м Плотность γ, кг/м³ Коэффициент теплопроводности λ, Вт/(м °∁)
Линолеум утепленный 0,007 1600 0,29
Плитка кафельная, метлахская, керамическая 0,015 1800 ÷ 2400 1,05
Ламинат 0,008 850 0,1
Паркетная доска 0,015 ÷ 0,025 680 0,15
Утеплитель (урса) 0,18 200 0,041
Цементно-песчаная стяжка 0,02 1800 0,76
Железобетонная плита 0,2 2500 1,92

Устройство водяного теплого пола в бетонной стяжке с финальным покрытием кафельной плиткой

Полотенцесушители

Полотенцесушитель для ванной сам является наглядным примером того, как можно улучшить теплоотдачу трубы. «Змеевик» прибора – не что иное, как искусственно увеличенная площадь теплового излучения. Поскольку раньше они были лишь частью общей ветки отопления, изменить диаметр представлялось возможным. Поэтому площадь теплопередачи увеличивалась путем простого наращивания длины.

Кстати, как раз водяной полотенцесушитель из нержавеющей стали будет неплохо смотреться в черном цвете. Блестящие и хромированные изделия, хоть и выглядят красиво, препятствуют теплообмену между трубой и окружающей средой.

Для вертикально ориентированных систем, таких как радиаторы , имеет значение способ подключения входных и выходных труб. Теплоотдача одного прибора при разной установке может значительно измениться:

  • 100% эффективности – диагональное подключение (вход горячей воды сверху, выход с обратной стороны внизу);
  • 97% – одностороннее с верхним входом;
  • 88% – нижнее ;
  • 80% – диагональное обратное (с нижним входом);
  • 78% – одностороннее с нижним входом и выходом отработанной воды.

Расчеты труб для водяного теплого пола (длина, диаметр, шаг и способы укладки и трубы)

Ограниченная длина низконапорного отопительного контура связана эффектом «замкнутой петли», при котором потеря давления превышает 20 кПа (0,2 бара). Увеличение мощности насоса, в данном случае не выход — сопротивление будет возрастать пропорционально увеличению давления.

Теплые водяные полы лучше обустраивать в помещениях, где проживают постоянно, а не пользуются время от времени

Расчетная длина труб для теплого пола определяется по формуле:

L = (S/a×1,1) + 2c, (м), где

L — длина контура, м;

S — площадь, контура, м²;

a — шаг укладки, м;

1,1 — увеличение размера шага на изгиб (запас);

2c — длина подводящих труб от коллектора до контура, м.

Схема обустройства теплого водяного пола в бетонной стяжке

Обогревательный контур прокладывают, отступив 0,3 м от стен. Учитывают открытую площадь пола, которая передает равномерный поток излучения. Специалисты не рекомендуют монтировать отопительный контур в местах расстановки мебели. Длительная статическая нагрузка может стать причиной деформации труб.

При большой площади помещения отопительный контур разбивают на сектора. Основные правила зонирования — соотношение длин сторон 1/2, обогрев площади одного сектора не более 30 м² и соблюдение одинаковых длины и диаметра для цепей одного коллектора.

Температура теплоносителя в контуре теплого пола зависит от тепловой нагрузки, шага укладки, диаметра труб, толщины стяжки и материала напольного покрытия

Таблица 2. Соотношение длин и диаметров труб контура:

Диаметр, мм Материал трубы Рекомендованная длина контура, м
16 металлопластик 80 ÷ 100
18 сшитый полиэтилен 80 ÷ 120
20 металлопластик 120 ÷ 150

Диаметр и шаг трубной раскладки зависит от тепловой нагрузки, назначения, размера и геометрии комнаты. Зона распространения тепла пропорциональна радиусу трубы. Труба обогревает участок пола в каждую сторону от центра трубы. Сбалансированный шаг труб: Dy 16 мм — 0,16 м; 20 мм — 0,2 м; 26 мм — 0,26 м; 32 мм — 0,32 м.

Конструкция металлопластиковых труб для теплого водяного пола

В паспортных данных изделий указывают максимальную пропускную способность труб, на основании которой вычисляют линейное изменение давления. Оптимальное значение скорости теплоносителя в трубах водяного отопления 0,15 ÷ 1 м/с.

Таблица 3. Зависимость шага от площади и нагрузки сектора:

Диаметр, мм Расстояние по осям (шаг труб), м Оптимальная нагрузка, Вт/м² Общая (или разбитая на участки) полезная площадь помещения, м²
16 0,15 80 ÷ 180 12
20 0,20 50 ÷ 80 16
26 0,25 20
32 0,30 меньше 50 24

Варианты укладки труб: простые, угловые или двойные петли (змейки), спирали (улитки). Для узких коридоров и помещений неправильной формы используют укладку змейкой. Большие площади разбивают на сектора. Допускается комбинированная укладка: в краевой зоне труба выкладывается змейкой, в основной части — улиткой.

Варианты укладки труб водяного теплого пола

По периметру, ближе к наружной стене и возле оконных проемов, проходит подача контура. Шаг укладки в краевых зонах может быть меньше расстояний между трубами в центральной части комнаты. Подключение усилений краевой зоны необходимо для повышения мощности теплового потока.

В расчетах труб для водяного теплого пола используют диаметры 16, 20, 26, 32 мм.

Укладка труб водяного теплого пола по спиральной схеме снижает гидравлическое сопротивление

Для систем теплых водяных полов применяют гофрированный, нержавеющий стальной, медный, металлопластиковый, сшитый полиэтиленовый трубопровод. Гофрировать трубу для теплых полов стали относительно недавно для того, чтобы облегчить монтаж конструкции и сократить расход на поворотные увеличения длины.

Полипропиленовый трубопровод обладает большим радиусом изгиба, поэтому в системах теплых полов применяется редко.

Гофрированная труба из нержавеющей стали для обустройства водяного теплого пола

Проектируем водяной тёплый пол

Как было сказано выше – одним из основных показателей для проектирования греющей системы является плотность эффективного потока тепловой энергии, производимой 1 м2 ТП (g, Вт/м2) – удельная мощность теплого пола. Она должна полностью компенсировать теплопотери помещения – Q, Вт.

g=Q/F,

где F, м2 – полезная площадь пола, которая будет использована под отопление.  Она принимается, как общая площадь помещения за вычетом мест, где будет установлена мебель, а также свободной зоны 20-30 см от стен и мебели.

Величина Q учитывает множество параметров, частично приведенных в предыдущем разделе. Для её точного вычисления можно пользоваться методикой предложенной в справочном пособии Е. Г. Малявиной «Теплопотери здания», требующей углубленного подхода. Однако на практике частнику проще будет принять некие усредненные величины теплопотерь типовых зданий. Например, комната 18 м2 с одной наружной стеной и окном, а также потолками до 3 м, будет иметь примерные теплопотери 1800 Вт. Данный показатель справедлив для расчета теплого пола в помещениях многоквартирного дома, построенного в умеренной климатической зоне. А вот для частного дома его уже придется увеличить в 1,2-1,5 раза. Также увеличиваются значения теплопотерь, если установлены большие окна, комната угловая, тонкие стены и т.д.

Удельная теплоотдача теплого пола должна находиться в определенных пределах. Ведь его перегрев приводит к дискомфорту жильцов, разрушению строительно-отделочных материалов. Так, максимальная температура поверхности напольного покрытия (tf, С) рекомендуется:

  • + 29°С – для жилых помещений (спальни, гостиной, кабинета);
  • + 33°С – для помещений с повышенной влажностью (санузла, кухни);
  • + 35°С – для участков возле внешних стен.

Табличный подбор шага укладки трубопроводов

Зная плотность эффективного потока тепловой энергии (g, Вт/м2), тип используемого покрытия (его сопротивление теплопередаче – Rw, м2*ОС/ Вт или м2*К/Вт), рекомендуемую температуру поверхности пола для данного помещения (tf, С), а также градиент рабочих температур теплоносителя (tz/tp, С/С), можно по таблицам 1-3 подобрать шаг трубы (b, м).

Таблица 1.

Таблица 2.

Таблица 3.

Вычисляем количество и диаметр трубопроводов

Расчет длины трубы для теплого пола выполняем по формуле:

L=(F/M)*1,1+2*N, где

  • L – искомая длина трубопровода, м;
  • F – полезная площадь пола отапливаемого помещения, м2;
  • b – шаг (частота прокладки) витков, м;
  • N – расстояние от коллектора, расположенного на стене, до уровня пола, м;
  • 1,1 – коэффициент запаса труб на повороты.

Расход трубы также можно прикинуть, воспользовавшись таблицей 4.

Таблица 4.

Шаг, мм Расход трубы, м/м2
100 10
150 6,7
200 5
250 4
300 3,4

Профессиональный расчет теплого водяного пола также включает подбор внутреннего диаметра (D, м) трубопроводов. Он должен соответствовать целому ряду параметров таким, как гидравлическое сопротивление системы, техническим возможностям циркуляционного насоса, требуемым для прокачки объемам теплоносителя и другим. Тем не менее, практически для любой небольшой индивидуальной тепловой установки обогрева полов, можно смело брать, например, металлопластиковую трубу Ø 16 мм, у которой внутренний Ø 12 мм. При этом следует учитывать, что рекомендуемая длина отопительного контура в этом случае не должна превышать 100 м (максимум 120 м).  Если же расчет трубы для теплого пола требует большего её метража, то тогда контур необходимо разбить на два и более.

Помимо металлопластика подойдут: медь, ПВХ, сшитый полиэтилен. Они обладают схожими гидравлическими параметрами, поэтому их диаметры подбираются аналогично.

Насосное оборудование в расчетах теплого пола

Снижение температуры теплоносителя позволяет достигнуть эффективной работы циркуляционных насосов.

Нагревательный контур теплых полов расположен горизонтальной плоскости и охватывает большую площадь. Сила, которую циркуляционный насос придает потоку, расходуется на преодоление линейных и местных сопротивлений. Расчет насоса для теплых полов зависит от диаметра, шероховатости трубы, фитингов и длины контура.

Схема подключения системы отопления с теплым водяным полом

Основной параметр расчета — производительность насоса в низконапорном контуре:

Н = (П×L + ΣК)/1000, (м), где

Н — напор циркуляционного насоса, м;

П — гидравлическая потеря на погонном метре длины (паспортные данные от производителя), паскаль/метр;

L — максимальная протяженность труб в контуре, м;

K — коэффициент запаса мощности на местные сопротивления.

К = К1 + К2 +К3, где

К1 — сопротивление на переходниках и тройниках, соединениях (1,2);

К2 — сопротивление на запорной арматуре (1,2);

К3 — сопротивление на смесительном узле в системе отопления (1,3).

Напорная характеристика циркуляционного насоса

Степень производительности, которой обладает циркуляционный насос, определяют по формуле:

G= Q/(1,16 ×∆t), (м³/час), где

Q — тепловая нагрузка отопительного контура (Вт);

1,16 — удельная теплоемкость воды (Втч/кгС);

∆t — теплосъем в системе (для низконапорных контуров 5 ÷ 10°С).

Коллекторный шкаф с подключенной системой теплого пола

Таблица 5. Зависимость мощности агрегата от площади отапливаемых помещений (для гидравлического расчета теплого пола):

Площадь пола, м² Производительность циркуляционного насоса для теплого пола, м³/ч
80 ÷ 120 1,5
120 ÷ 160 2,0
160 ÷ 200 2,5
200 ÷ 240 3,0
240 ÷ 280 4,0

Пример схемы разводки теплого водяного пола по секторам

Расчет мощности системы отопления по площади жилья

Одним из наиболее быстрых и простых для понимания способов определения мощности отопительной системы является расчет по площади помещения. Подобный метод широко применяется продавцами нагревательных котлов и радиаторов. Расчет мощности системы отопления по площади происходит в несколько простых шагов.

Шаг 1. По плану или уже возведенному зданию определяется внутренняя площадь постройки в квадратных метрах.

Шаг 2. Полученная цифра умножается на 100-150 – именно столько ватт от общей мощности отопительной системы нужно на каждый м2 жилья.

Шаг 3. Затем результат умножается на 1,2 или 1,25 – это необходимо для создания запаса мощности, чтобы отопительная система была способна поддерживать комфортную температуру в доме даже в случае самых сильных морозов.

Шаг 4. Вычисляется и записывается конечная цифра – мощность системы отопления в ваттах, необходимая для обогрева того или иного жилья. В качестве примера – для поддержания комфортной температуры в частном доме площадью 120 м2 потребуется примерно 15 000 Вт.

Шаг 5. По уже определенным расчетным данным подбирается конкретная модель нагревательного котла и радиаторов.

Расчет площади коттеджа по его плану. Также здесь отмечены магистрали отопительной системы и места установки радиаторов

Таблица расчета мощности радиаторов по площади помещения

Следует понимать, что единственным преимуществом подобного способа теплового расчета отопительной системы является скорость и простота. При этом метод обладает множеством недостатков.

  1. Отсутствие учета климата в той местности, где возводиться жилье – для Краснодара система отопления с мощностью 100 Вт на каждый квадратный метр будет явно избыточной. А для Крайнего Севера она может оказаться недостаточной.
  2. Отсутствие учета высоты помещений, типа стен и полов, из которых они возведены – все эти характеристики серьезно влияют на уровень возможных тепловых потерь и, следовательно, на необходимую мощность отопительной системы для дома.
  3. Сам способ расчета системы отопления по мощности изначально был разработан для больших производственных помещений и многоквартирных домов. Следовательно, для отдельного коттеджа он не является корректным.
  4. Отсутствие учета количества окон и дверей, выходящих на улицу, а ведь каждый из подобных объектов является своеобразным «мостиком холода».

Так имеет ли смысл применять расчет системы отопления по площади? Да, но только в качестве предварительных прикидок, позволяющих получить хоть какое-то представление о вопросе. Для достижения лучших и более точных результатов следует обратиться к более сложным методикам.

Расчёт теплопотерь в доме

Согласно второму началу термодинамики (школьная физика) не существует самопроизвольной передачи энергии от менее нагретых к более нагретым мини- или макрообъектам. Частным случаем этого закона является “стремление” создания температурного равновесия между двумя термодинамическими системами.

Например, первая система – окружающая среда с температурой -20°С, вторая система – здание с внутренней температурой +20°С. Согласно приведённого закона эти две системы будут стремиться уравновеситься посредством обмена энергии. Это будет происходить с помощью тепловых потерь от второй системы и охлаждения в первой.

Однозначно можно сказать, что температура окружающей среды зависит от широты на которой расположен частный дом. А разница температур влияет на количество утечек тепла от здания (+)

Под теплопотерями подразумевают непроизвольный выход тепла (энергии) от некоторого объекта (дома, квартиры). Для обычной квартиры этот процесс не так “заметен” в сравнении с частным домом, поскольку квартира находиться внутри здания и “соседствует” с другими квартирами.

В частном доме через внешние стены, пол, крышу, окна и двери в той или иной степени “уходит” тепло.

Зная величину теплопотерь для самых неблагоприятных погодных условий и характеристику этих условий, можно с высокой точностью вычислить мощность системы отопления.

Итак, объём утечек тепла от здания вычисляется по следующей формуле:

Q=Qпол+Qстена+Qокно+Qкрыша+Qдверь+…+Qi, где

Qi – объём теплопотерь от однородного вида оболочки здания.

Каждая составляющая формулы рассчитывается по формуле:

Q=S*∆T/R, где

  • Q – тепловые утечки, В;
  • S – площадь конкретного типа конструкции, кв. м;
  • ∆T – разница температур воздуха окружающей среды и внутри помещения, °C;
  • R – тепловое сопротивление определённого типа конструкции, м2*°C/Вт.

Саму величину теплового сопротивления для реально существующих материалов рекомендуется брать из вспомогательных таблиц.

Кроме того, тепловое сопротивление можно получить с помощью следующего соотношения:

R=d/k, где

  • R – тепловое сопротивление, (м2*К)/Вт;
  • k – коэффициент теплопроводности материала, Вт/(м2*К);
  • d – толщина этого материала, м.

В старых домах с отсыревшей кровельной конструкцией утечки тепла происходят через верхнюю часть постройки, а именно через крышу и чердак. Проведение мероприятий по утеплению потолка или теплоизоляции мансардной крыши решают эту проблему.


Если утеплить чердачное пространство и крышу, то общие потери тепла от дома можно значительно уменьшить

В доме существуют ещё несколько видов тепловых потерь через щели в конструкциях, систему вентиляции, кухонную вытяжку, открывания окон и дверей. Но учитывать их объём не имеет смысла, поскольку они составляют не более 5% от общего числа основных утечек тепла.

Размеры инфракрасной пленки

Инфракрасный плёночный пол — это секции, состоящие из графитовых полос, перпендикулярно соединённых с  медно-серебряными проводниками. Секция размещается в специальной пленке из полиэстера толщиной около 0,4 мм.

В отличие от кабельного нагревателя, в плёночном отсутствует возможность изменять размеры, тем самым увеличить или уменьшать удельную мощность/м2. Расчет сводится к определению количества пленки, нужной для покрытия заданной площади, подбирая необходимые размеры рулона. Ширина варьируется от 50 до 100 см, а длина от 1 до 20 м.

Например, выбираем удельную мощность (130 — 230 Вт/м2). Затем — нужную ширину инфракрасной пленки. Смотрим, с какой площадью обогрева теплые полы есть в продаже (1 — 15 м2).

Предыдущая
Теплый полСистемы теплых полов и основные принципы их устройства
Следующая
Теплый полСравни, какое отопление лучше: теплый пол или батареи?

Расчет стоимости теплых полов

Газовый котел и напольный гидравлический контур соединяет коллектор. Равномерный поток теплоносителя обеспечивает автоматическая регулировка, с помощью балансировочных и термостатических вентилей. Обратный клапан предохраняет насосно-смесительный блок.

Таблица 6. Элементы комплектации теплого пола:

Название позиции Размер и единица измерения Цена за единицу товара (руб.)
Гидроизоляция рулон (1,5?50 м) от 2000
Демпферная лента 25 м от 500
Экранирующая теплоизоляция (пенополистирол) 1100?800?38 мм 769
Труба 16 ? 20 мм 50 ? 80
Бетонная стяжка: цемент сухие смеси 50 кг 25 кг 125 200
Коллекторная группа в сборе 2 выхода 4600
Насосно-смесительный узел: термостатическая головка балансировочный и термостатический клапаны, циркуляционный насос комплект от 20000

Общую стоимость теплого пола определяет площадь помещения, комплектация оборудования, качество материала и способ производства работ. Пакетное формирование теплого пола обеспечивает совместимость элементов и эффективный прогрев в диапазонах температурного режима. Заводская комплектация снижает стоимость материалов в 1,5-2 раза.

Элементы комбинированной системы отопления

Хозяин дома может сделать расчет водяных теплых полов, своими руками смонтировать систему, если обладает достаточным запасом знаний в теплотехнике, гидравлике, материаловедении и опытом выполнения сантехнических работ. Масса положительных примеров из жизни вдохновляет. Однако, каждый должен носить «свой портфель», собственный дом — не плацдарм для экспериментов.

https://youtube.com/watch?v=tqmDowcXyOg

Утеплитель минеральная вата

Из определения, закрепленного ГОСТом 31913-2011, можно сделать заключение, что минеральную вату следует отнести к классу волокнистых материалов, в производстве которых использованы расплавы горных пород и металлических шлаков.

Само понятие объединяет в себе 3 вида материала:

  • стекловолокно;
  • шлаковата;
  • каменная вата.

У них разная толщина и длина волокна, разные показатели теплопроводности, влагостойкости, они по-разному реагируют на механические нагрузки, но состав во всех идентичный. Отличаются между собой и характеристики минеральной ваты, выпущенной разными производителями.

Основа минваты — горные породы, их в ней около 90%. Остальное приходится на добавки — бентонитовую глину и смолы с фенолом в основе.

Минеральная вата отвечает главным запросам — обладает низкой теплопроводимостью, устойчивостью перед плесенью, грибками, возгоранием. Существует 4 варианта этого материала: с волокнами, расположенными горизонтально, вертикально, пространственного вида, гофрированными

Есть у минеральной ваты ряд качеств, которые заставляют задуматься прежде, чем делать выбор в ее пользу.

К минусам утеплителя относят:

  • наличие в ее составе формальдегидных смол, отрицательно влияющих на здоровье;
  • способность усаживаться под воздействием механических нагрузок и как следствие появление «мостиков холода»;
  • высокая водопоглощаемость из-за чего утеплитель нуждается в хорошей гидроизоляции.

Ватные утеплители используют для обустройства открытых участков канализационных трубопроводов. Их не укладывают вокруг труб, расположенных в земле.

При намокании этот вид теплоизоляции практически полностью утрачивает свои качества и нередко становится причиной появления ржавчины на металлических подземных коммуникациях.

Монтаж теплоизоляции из минваты проводят в 3 этапа:

  1. На трубы в виде спирали наклеивают фольгированный скотч.
  2. Трубу плотно оборачивают утеплителем. При этом швы в местах соединения должны совпадать.
  3. Крепят на трубах теплоизоляцию путем обматывания ее сантехническим скотчем.

С учетом того, что плотность материала небольшая, и он хорошо впитывает влагу, потребуется гидроизоляция. Для этого используют фольгу или рубероид. Облегчает задачу наличие на утеплителе фольгированного слоя, но торцы все равно придется изолировать.

Утепление труб стекловатой

Стекловата, как один из вариантов минеральной ваты, имеет все ее положительные и отрицательные характеристики. Она является природным материалом, получаемым из такого сырья, как кварциты или песок.

Коэффициент теплопроводимости этого теплоизолятора в пределах 0,028-0.034. Чем больше толщина, тем он меньше. Средний показатель плотности — 150-200 кг/мᶾ.

Процесс получения стекловаты состоит из плавления исходного материала с нагнетанием температуры до 1400⁰. При этом расплавленное стекло обдувают паром, в результате чего получаются тонкие нити. Их пропитывают связывающими растворами, полимерными аэрозолями, затем для выравнивания и формировки подают на специальные валки, а после материал проходит этап полимеризаии, охлаждения и раскроя

Для снижения гигроскопичности некоторые производители выпускают стекловату с уже готовым слоем изоляции. Это может быть как фольга, так и стеклохолст. К ним относятся такие популярные утеплители, как Урса, Кнауф, Изовер. Стекловолоконный теплоизолятор поступает на строительный рынок в виде матов, рулонов, цилиндров.

Можно ли утеплять канализационные трубы шлаковатой?

Материал является побочным продуктом технологии выплавки чугуна. Шлаковата имеет рыхлую структуру и одну очень неприятную особенность, свойственную продуктам доменного производства — остаточную кислотность.

В условиях влаги на изолированной этим материалом поверхности образовываются кислоты, отрицательно воздействующие как на металл, так и на пластик. Шлаковата плавится при температуре 300°С, имеет коэффициент теплопроводности 0,46-0,48, толщину волокна в пределах от 4 до 12 микрон. Обладает низкой экологичностью

Коэффициент водопоглощения у этого утеплителя для канализационных труб выше, чем у стекловаты. Материал неустойчив к перепаду температур, следовательно срок службы у него небольшой.

По этой причине для утепления канализационных труб его, как и прочие ватные варианты, используют редко, применяют только для утепления надземных участков коммуникаций.

Исходным материалом для ее производства минваты являются горные породы. Базальтовая вата — прочный материал с плотностью 25-200 гк/мᶾ и небольшим коэффициентом теплопроводности — 0,03 – 0,04.

Очень устойчива к перепадам температур — не теряет первоначальных свойств в диапазоне -60 +200°С, а плавиться начинает, когда температура подымается выше 1000°С.

Базальтовую вату выпускают многие авторитетные производители в разных формах: рулонах, матах, цилиндрах. Самые известные компании — ТехноНиколь, Роквул, Кнауфф

Волокна каменной ваты имеют такие же параметры, как и у шлаковой, но они гораздо эластичнее. Поэтому они не ломаются, не попадают в органы дыхания, не раздражают кожу. Но недостатки есть и у этого вида минваты — высокая стоимость, недостаточная прочность и все то же фенольное вещество у некоторых марок материала.

Расчет необходимого количества труб

Для устройства пола с водяным обогревом выбирают разные методы укладки труб, отличающиеся формой: змейка трех видов – собственно змейка, угловая, двойная и улитка. В  одном смонтированном контуре моет встречаться комбинация разных форм. Иногда для центральной зоны пола выбирают «улитку» а для краев — однин из видов «змейки».

«Улитка» — рациональный выбор для объемных помещений с простой геометрией. В помещениях сильно вытянутых или имеющих сложные очертание лучше применить «змейку» (+)

Дистанцию между трубами называют шагом. Выбирая этот параметр нужно удовлетворить два требования: ступня ноги не должна чувствовать разницы температуры на отдельных зонах пола, а использовать трубы нужно максимально эффективно.

Для пограничных зон пола рекомендуют применять шаг в 100 мм. На остальных участках можно сделать выбор шага в пределах от 150 до 300 мм.

Важное значение имеет теплоизоляция пола. На первом этаже ее толщина должна достигать минимум 100 мм

Для этой цели используют минвату или экструзивный пенополистирол

Для подсчета длины трубы есть простая формула:

L = S/N*1.1, где

  • S – площадь контура;
  • N – шаг укладки;
  • 1,1 – запас на изгибы 10%.

К итоговому значению добавляют отрезок трубы, проложенной от коллектора до разводки теплого контура как на обратке, так и на подаче.

Пример расчета.

Исходные значения:

  • площадь – 10 м²;
  • расстояние до коллектора – 6 м;
  • шаг укладки – 0,15 м.

Решение задачи простое: 10/0,15*1,1+(6*2) = 85,3 м.

Используя металлопластиковые трубы длиной до 100 м, чаще всего выбирают диаметр 16 или 20 мм. При длине трубы 120-125 м сечение ее должно равняться 20 мм².

Одноконтурная конструкция подходит только для помещения с небольшой площадью. Пол в больших комнатах делят на несколько контуров в соотношении 1:2 – длина конструкции должна превышать ширину в 2 раза.

Вычисленное ранее значение — это протяженность трубы для пола в целом. Однако для полноты картины нужно выделить длину отдельного контура.

На этот параметр влияет гидравлическое сопротивление контура, определяемое диаметром выбранных труб и объемом воды подаваемой в единицу времени. Если этими факторами пренебречь, потери давления будут настолько большими, что никакой насос не заставит теплоноситель циркулировать.

Определение расхода трубы в зависимости от выбранного шага укладки

Контуры одной длины — это случай идеальный, но на практике встречающийся нечасто, т.к площади помещений разного предназначения очень отличается и приводить длину контуров к одному значению просто нецелесообразно. Профессионалы допускают разницу в длине труб от 30 до 40%.

Величиной диаметра коллектора и пропускной способностью узла смешения определяется допустимое число петель, подключенных к нему. В паспорте на узел смешения всегда можно найти величину тепловой нагрузки, на которую он рассчитан.

Допустим, коэффициент пропускной способности (Kvs) равен 2,23 м3/ч. При таком коэффициенте определенные модели насоса выдерживают нагрузку от 10 до 15 Вт.

Чтобы определить количество контуров, нужно вычислить тепловую нагрузку каждого. Если площадь, занимаемая теплым полом, равняется 10 м², а теплоотдача 1 м², то показатель Kvs составляет 80 Вт, то 10*80 = 800 Вт. Значит, узел смешения сможет обеспечить 15 000/800 = 18,8 помещений или контуров площадью по 10 м².

Эти показатели максимальные, и применить их можно только теоретически, а в действительности цифру нужно уменьшить минимум на 2, тогда 18 – 2 = 16 контуров.

Нужно при подборе смесительного узла (коллектора) смотреть, есть ли у него такое количество выводов.

Проверка правильности подбора диаметра труб

Чтобы проверить, правильно ли было подобрано сечение труб, можно воспользоваться формулой:

υ = 4*Q*10ᶾ/n*d²

Когда скорость соответствует найденному значению, сечение труб выбрано верно. Нормативные документы допускают скорость максимум 3 м/сек. при диаметре до 0,25 м, но оптимальным значением является 0,8 м/сек., так как при росте ее величины повышается шумовой эффект в трубопроводе.

Преимущества и недостатки теплого пола как основного отопления

Главное достоинство – комфорт. Теплый пол под ногами создает ощущение тепла и уюта гораздо быстрее, чем горячий воздух комнаты. Есть и другие преимущества:

  • Равномерный прогрев комнаты. Тепло идет от всей площади пола, в то время как батареи частично согревает стены и распространят тепло только на определенном участке.
  • Работает система совершенно бесшумно.
  • Так как нагревательные элементы заключены в стяжке, отопление меньше влияет на уровень влажности.
  • Можно выбрать вариант с разной тепловой инерцией. Водяной пол медленно нагревается и остывает почти сутки. ИК-пленочный мгновенно нагревает поверхность пола и остывает так же быстро.
  • Отопление водяным теплым полом обходится дешевле, чем радиаторами. Стоимость электрического отопления не так привлекательна.
  • Монтируют системы на самых маленьких площадках, даже на лестничных ступенях.
  • Батареи не украшают комнату и не вписываются в интерьер. Нагревательные элементы теплого пола скрыты от глаз.

Недостатки:

  • Обустройство теплого пола – процесс трудоемкий и длительный. На базовое основание укладывают гидро-и теплоизоляцию. Потом размещают арматурную сетку или маты для укладки. Располагают трубки, выполняют подключение, заливают бетонную стяжку, кладут подложку и настилают чистовой пол. На это нужно время и деньги.
  • Водяное напольное отопление отнимает не менее 10 см высоты, а электрическое – от 3 до 5 см.
  • Ремонт очень сложен: при повреждениях необходимо снять покрытие, разбить стяжку, устранить дефекты и заново настелить пол.

Выбор теплоносителя

Чаще всего в качестве рабочей жидкости для систем отопления применяется вода. Впрочем, эффективным альтернативным решением может стать антифриз. Такая жидкость не замерзает при понижении температуры окружающей среды до критической для воды отметки. Несмотря на очевидные преимущества, цена антифриза достаточно высока. Поэтому используют его преимущественно для обогрева незначительных по площади строений.

Заполнение отопительных систем водой нуждается в предварительной подготовке такого теплоносителя. Жидкость должна быть отфильтрована от растворенных минеральных солей. Для этого могут быть использованы специализированные химические реагенты, которые присутствуют в продаже. Более того, из воды в системе отопления должен быть удален весь воздух. В противном случае возможно снижение эффективности обогрева помещений.

Увеличение теплоотдачи.

Для эффективного увеличения показателя излучаемого тепла, есть много способов:

  • установка конвектора;
  • покраска труб черной краской;
  • установка регистра;
  • дополнительные секции батареи.

Конвектор представляет собой изогнутую трубу с металлическими пластинами. Изготовить его можно самостоятельно или купить в магазине более современный аналог.

Применение матовой черной краски для окрашивания поверхности теплоносителя тоже дает неплохой результат. Эстетически это выглядит не очень привлекательно, но если речь идет о комфорте, то приходится выбирать.

Еще одной недорогой и достаточно популярной конструкцией является регистр. Это несколько соединенных между собой широких труб с заваренными срезами. К ним также относятся полотенцесушители, радиаторы, магистральные линии и даже обыкновенную стальную трубу, закрепленную по всему периметру комнаты.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Сам Себе Строитель
Добавить комментарий